P.J.M. Bank,
M.A. (Marina) Cidota,
P.W. (Elma) Ouwehand,
S.G. (Stephan) Lukosch,
Version 1 of Dataset published 2018 via 4TU.Centre for Research Data
Data was collected within the Technology in Motion project (protocol registered by CCMO as NL54281.058.15), aimed at developing innovative techniques to characterize motor function in patients with neurological disorders. Augmented reality (AR) systems with contactless tracking of the hand and upper body offer opportunities for objective quantification of motor (dys)function in a challenging, engaging and patient-tailored environment. We therefore explored the potential of AR for evaluating 1) speed and goal-directedness of movements within the individually determined interaction space; 2) adaptation of hand opening to objects of different sizes; and 3) obstacle avoidance in healthy individuals (N=10) and two highly prevalent neurological conditions (N=10 patients with Parkinson’s Disease [PD] and N=10 stroke patients). This dataset contains data from 10 PD patients, 10 stroke patients and 10 age- and sex-matched controls. For each participant we provide the raw data (recorded during the 3 AR games), consisting of i) LeapMotion data 3D-coordinates of