10.60732/85b7fa44

URL

Metadata

linear_magnetic_coefficient_in_Cr2O3_JPCM2024 Dataset

Eric Bousquet, Eddy Lelièvre-Berna, Navid Qureshi, Jian-Rui Soh, Nicola Ann Spaldin, Andrea Urru, Xanthe Henderike Verbeek, Sophie Francis Weber,
We establish the sign of the linear magnetoelectric (ME) coefficient, α, in chromia, Cr₂O₃. Cr₂O₃ is the prototypical linear ME material, in which an electric (magnetic) field induces a linearly proportional magnetization (polarization), and a single magnetic domain can be selected by annealing in combined magnetic (H) and electric (E) fields. Opposite antiferromagnetic domains have opposite ME responses, and which antiferromagnetic domain corresponds to which sign of response has previously been unclear. We use density functional theory (DFT) to calculate the magnetic response of a single antiferromagnetic domain of Cr₂O₃ to an applied in-plane electric field at 0 K. We find that the domain with nearest neighbor magnetic moments oriented away from (towards) each other has a negative (positive) in-plane ME coefficient, α⊥, at 0 K. We show that this sign is consistent with all other DFT calculations in the literature that specified the domain orientation, independent of the choice

Citation